20231019_JWST_SN_0

A James Webb-űrtávcsővel a szupernóvák körüli porképződés nyomában

Az SZTE asztrofizikusainak közreműködésével derít fényt a csillagrobbanások kozmikus porképződésben betöltött szerepére a James Webb-űrtávcső.

A csillagközi tér telis-tele van kisebb-nagyobb porszemcsékkel, amelyek jelenlegi tudásunk szerint kulcsfontosságú szerepet töltenek be a kozmikus körforgásban. Jelenlegi ismereteink alapján magát a Földet is ilyen, kezdetben apró porszemcsék összeállása indította el a bolygóvá válás útján.

Jelentősége és nagy mennyisége ellenére ugyanakkor a kozmikus por eredete a mai napig nem teljesen tisztázott. A nagytömegű csillagok fejlődését lezáró, ún. magösszeomlásos szupernóva-robbanásokat régóta a csillagközi porszemcsék lehetséges forrásainak tekintik, amire a robbanást követő években, évtizedekben észlelhető, intenzív infravörös sugárzás detektálása szolgálhat közvetlen bizonyítékként. Az elmúlt bő egy évtizedben az SZTE Fizikai Intézet asztrofizikusai Dr. Szalai Tamás (Kísérleti Fizikai Tanszék) vezetésével aktívan részt vettek a szupernóvák infravörös jellemzőinek vizsgálatában, elsősorban a NASA 2003-2020 között üzemelt Spitzer-űrtávcsövének adatait elemezve (a témáról részletesebb összefoglalás a Fizikai Szemle 2022/10. számában jelent meg). A terület vezető kutatóival kialakított együttműködéseknek és szegedi vezetésű publikációknak köszönhetően Szalai Tamást és korábbi doktorandusz hallgatóját, Zsíros Szannát (jelenleg doktorjelölt és tanársegéd a Kísérleti Fizikai Tanszéken) meghívták egy nemzetközi kutatócsoportba, amely 2021 márciusában több pályázatot is elnyert a James Webb-űrtávcső első tudományos ciklusában történő mérési lehetőségekre (Szalai Tamás egyúttal az egyik nyertes, 2666-os számú pályázat társtémavezetője is). A közelmúltban megszülettek a szupernóva-robbanások kozmikus porképződésben betöltött szerepével kapcsolatos első, a Webb-űrtávcsőhöz köthető eredmények is, amelyeket a szegedi kutatókat is tömörítő, nemzetközi csoport rangos folyóiratcikkekben és konferenciákon ismertetett.


Az első eredmények a Webb-űrtávcsővel: az SN 2004et és az SN 2017eaw vizsgálata


Az SN 2004et és az SN 2017eaw szupernóvák egyaránt a közeli (kb. 25 millió fényévre lévő), „Tűzijáték-galaxisnak” is nevezett NGC 6946-ban tűntek fel. A kutatócsoport a késői közép-infravörös tartományon mért adatpontokra illesztett analitikus pormodellekből több mint 0,014 naptömegű amorf szenes, illetve 4·10-4 naptömegű szilikátos port mutatott ki a két robbanás maradványaiban (ill. azok szoros környezeteiben). Feltételezhető azonban, hogy további por van jelen a még hidegebb (<150 K), vagy az optikailag vastag területek által eltakart régiókban. A pormodellekből a por tömege és hőmérséklete mellett annak geometriájára, forrásaira és fűtési mechanizmusaira is lehetett következtetni. A kutatócsoport tagjai megállapították, hogy a fenti két szupernóva esetén a legvalószínűbb az, hogy a kimutatott por a robbanás során ledobott anyagban keletkezett. Emellett azonban a por magas hőmérsékletéből arra következtetnek, hogy egy extra energiaforrás fűtheti az újonnan keletkezett porszemcséket, és ennek valószínűleg a most is zajló (a 10 m átmérőjű Keck I Teleszkóppal készített, késői optikai spektrumokból kimutatható), csillagközi anyaggal való kölcsönhatáshoz van köze.

Függetlenül a fűtési mechanizmustól, a szerzők az extragalaktikus szupernóvák között - az SN 1987A után - az eddigi második legnagyobb portömeget mutatták ki az SN 2004et esetében, ami tovább növelte az eredmény jelentőségét. A rangos MNRAS folyóiratban megjelent tanulmányról többek között a Webb-űrtávcső hivatalos honlapja, valamint a SciTech Daily hírportál is beszámolt.


Az SN 1980K szerencsés detektálása - egy szegedi vezetésű vizsgálat


Az SN 1980K ugyancsak a közeli “szupernóva-gyárban” született és egy szerencsés mérés következtében a MIRI detektor mind a nyolc szűrőjében egy fényes pontforrásként tűnt fel az eredetileg az SN 2004et-t célzó képeken. Az SN 1980K szerencsés elhelyezkedéséből és fejlődési szakaszából adódóan ígéretes jelöltként szolgál a fiatal szupernóvák és az idős maradványok közötti átmeneti szakasz vizsgálatára, valamint nagyszerű lehetőséget kínál a robbanás közvetlen környezetének a beható vizsgálatára is. A nemzetközi kutatócsoport - ez alkalommal a szegedi kutatók, Zsíros Szanna és Szalai Tamás vezetésével - a fotometriai feldolgozást követően analitikus pormodellek illesztésével és a szintén a Keck-távcsővel készített optikai spektrum modellezésének segítségével határozták meg a por tömegét, hőmérsékletét és összetételét. A kutatók 0,002 naptömegű, szilikátok által dominált, kb. 150 K átlagos hőmérsékletű port, valamint egy további, magasabb hőmérsékletű por/gáz komponenst mutattak ki az űrtávcső adatai alapján.


20231019_JWST_SN_1

Balra: Az SN 1980K a JWST MIRI detektorának felvételeiből összeállított, hamisszínes képen. Jobbra: Az SN 1980K jelű szupernóva JWST MIRI-adatpontjaira legjobban illeszkedő pormodell az objektumról készült 2019-es Spitzer-mérésekkel és – összehasonlításként – az SN 1987A skálázott Spitzer IRS-spektrumával kiegészítve (Zsíros és mtsai, 2023).


Ugyanakkor a késői optikai spektrumban jelenlévő erős emissziós vonalak modellezése alapján még ennél is több, ~ 0,16-0,60 naptömegű por lehet jele a maradvány belsőbb tartományaiban. Ha azt a feltevést fogadjuk el, hogy az infravörös ill. az optikai tartományban megfigyelt por ugyanott van, akkor a „jéghegy és a csúcsa” jelenség szemtanúi vagyunk: ha ez igaz, akkor a Webb-bel feltehetően csupán egy részét látjuk a maradványban lévő pornak, és az optikai spektrumok elemzéséből kikövetkeztethető, nagyobb pormennyiség nagy része még hidegebb, a Webb számára már nem látszó formában van jelen.


20231019_JWST_SN_2b

Az SN 1980K optikai színképét 42 évvel a robbanást követően is rögzíteni lehetett - igaz, ehhez a kutatóknak a 10 m átmérőjű Keck teleszkóp képességeire volt szükségük. A hidrogén-alfa (balra) és az oxigén [OI] emissziós csúcsokra illesztett modellek is nagy mennyiségű (több tized naptömegnyi) por jelenlétére utalnak a szupernóva táguló anyagfelhőjében (Zsíros és mtsai, 2023).


Egy másik lehetőség, hogy az SN 1980K közép-infravörös adataiban egy másik, a robbanási centrumtól távolabb lévő porkomponenst, azaz robbanás előtt keletkezett porszemcsék sugárzását figyeljük meg, amelyek a szupernóva lökéshullámmal való ütközés során fűtődtek fel. Ezt a forgatókönyvet megerősíti az SN 1987A porgyűrűjéről felvett spektrummal való, nagy hasonlóság, valamint az utóbbi esetben szintén kimutatott, melegebb por/gáz komponens jelenléte. Ugyanakkor, az SN 1980K-nál kimutatott por mennyisége 2-3 nagyságrenddel nagyobb, mint az SN 1987A porgyűrűjénél látott érték, amiből a szerzők egy esetleges “szupergyűrű” jelenlétére tudtak következtetni.

A szegedi vezetésű szakcikk nemsokára szintén az MNRAS folyóiratban jelenik majd meg. Az SN 1980K-ról szóló eredményekről a vezető szerző, Zsíros Szanna az elmúlt hónapokban több nemzetközi konferencián is beszámolt - ezek közül kiemelkedik a szeptember elején Baltimore-ban (Egyesült Államok) rendezett "The First Year of JWST Science Conference", ahol munkatársunk az online előadás mellett az űrtávcső szakmai irányítását ellátó Space Telescope Science Institute felvezető reklámvideójában is szerepelhetett.


A kutatócsoport eddigi eredményei tehát több ponton egyértelműen megerősítették a magösszeomlásos szupernóvák elengedhetetlen szerepét a kozmikus portermelésben. További bizakodásra ad okot, hogy az első ciklus szegedi közreműködéssel elnyert programjaiból számos további adat várható még a következő hónapokban, másrészt vannak további (főleg közeli galaxisokat felmérő) programok során született, szabadon elérhető mérések is. Emellett pedig a szegedi kutatók közreműködésével további két program támogatást kapott a Webb-űrtávcső következő, második mérési ciklusában (Cycle 2), s ezek is segíthetnek majd közelebb kerülni a magösszeomlásos szupernóvák körüli porképződést övező kérdések megválaszolásához.


A cikkben ismertetett eredmények az Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal FK-134432 jelű pályázata, az MTA Bolyai János Kutatási Ösztöndíj, az Új Nemzeti Kiválósági Program (ÚNKP-22-5) és a Nemzet Fiatal Tehetségei Ösztöndíjprogram (NTP-NFTÖ-22-B-0166) támogatásával jöttek létre.


Kapcsolódó anyagok:








Tanulmányi hírek

Honlap_borito

Érdekel a körülötted lévő világ, és megismernéd pontosabban hogyan is működik? Szeretnél az ország egyik legjobb egyetemén egy gyönyörű városban tanulni? Ha a válaszod igen, legyél Te is fizika, fizikus-mérnök, csillagász, fotonikai mérnöki vagy fizikatanár szakos hallgató az SZTE-n!

fizikus-mernoki


Új szakkal bővítjük képzési kínálatunkat: 2024 szeptemberétől fizikus-mérnöki alapszakon is tanulhatnak az SZTE Fizikai Intézethez jelentkező hallgatók.


MIÉRT VÁLASZD A FIZIKUS-MÉRNÖKI SZAKOT?


– Szereted a fizikát, de az elmélet mellett a tervezésben és a gyakorlatban is jobban elmélyednél.

– Dinamikusan fejlődő területekre összpontosító, a világ gyors változásaira rugalmasan reagáló oktatásban lehet részed.

– Ipari partnereinkkel kialakított, innovatív és technológia-intenzív kis- és nagyvállalatok igényeire szabott, magyar nyelvű képzésen tanulhatsz.

– Fizikus-mérnöki diplomával hidat jelenthetsz a fizikusok és a mérnökök között, hiszen mindket szakterület skilljeivel rendelkezel.

– Mérnöki és fizikai tanulmányok mellett közgazdasági, informatikai és matematikai ismereteket is elsajátítasz.


FIZIKUS-MÉRNÖK KÉPZÉS SZEGEDEN


A nálunk képzett szakember egyaránt rendelkezik a természeti jelenségek mély megértésének és modellezésének képességével, valamint a kutatásfejlesztési feladatok kreatív megoldásához szükséges ismeretekkel és készségekkel. A megszerzett tudás birtokában képes a fizikai szemlélet alkalmazásával a műszaki, technológiai feladatok széleskörű megoldására, a problémák rendszerszintű átlátására.


IMG_0127


AMIT OKTATUNK


Matematikai ismeretek: vektor- és mátrixszámítás, differenciál- és integrálszámítás, valószínűségszámítás és statisztika, modern matematikai módszerek;

Fizika szakmai ismeretek: mechanika, optika, termodinamika és statisztikus fizika, elektromágnesség, illetve az atomfizika, kvantumfizika, szilárdtestfizika és magfizika alapjai;

Alkalmazott tudományos, technológiai és tervezési ismeretek: mérési módszerek, kísérleti eljárások és alkalmazásaik, számítógépes mérésvezérlés és folyamatszabályozás, tervezési ismeretek és számítógéppel segített tervezés, elektronika, méréstechnika és szenzorika, alkalmazott kémia;

Informatikai és számítástudományi ismeretek: programozás, számítógépes algoritmusok, gépi tanulás;

Kommunikációs és menedzsment ismeretek: gazdasági ismeretek, menedzsment, innováció, marketing, kommunikációs és prezentációs technikák.


Nézd meg itt, milyen óráid lesznek!


AHOGY OKTATUNK


– A diákok aktivitására építő oktatási módszerek széles körű alkalmazása.

– Sokrétű képzés: az elméleti órák anyaga számolási gyakorlatokon és laboratóriumi foglalkozásokon mélyül el.

– A legmodernebb informatikai és szimulációs eszközök és módszerek alkalmazásának elsajátítása a programozás alapjaitól a gépi tanulásig.


IMG_0312R


SPECIALIZÁCIÓK


Alkalmazott fotonika specializáció

Az Alkalmazott fotonika specializáció segítségével a hallgatóink felkészítést kapnak a lézeres technológiákat alkalmazó ipari folyamatok és eljárások alapjainak mélyreható megértésére.

Olyan optikai, lézerfizikai, spektroszkópiai és vákuumfizikai ismeretekre tesznek szert, melyeknek nemcsak az elméleti alapjait, de azok gyakorlatban történő alkalmazását is lehetőségük lesz laboratóriumi gyakorlatokon elsajátítani annak érdekében, hogy a munkaerőpiacon a szilárd elméleti ismeretek mellet gyakorlati készségekkel is rendelkeznek a szükséges területeken.


Anyagtudomány specializáció

Az Anyagtudomány specializáció célja, hogy a hallgatók átfogó képet kapjanak a legfontosabb anyagtudományi ismeretek és anyagvizsgálati módszerek alapjairól, az elméletet szemináriumokon, valamint számolási és laboratóriumi gyakorlatokon is alkalmazva.

A specializáció emellett kiemelt figyelmet fordít az olyan modern technológiai módszerek bemutatására is, mint a lézeres anyagmegmunkálás különböző fajtái, az additív gyártás (3D nyomtatás), illetve a nanotechnológia.


Orvosi technológia specializáció

Az Orvosi technológia specializációban résztvevők az emberi test anatómiái és élettani alapjainak megismerésén túl elmélyülhetnek az orvosi fizikával, az orvosbiológiai méréstechnikával, a biostatisztikával, és az egészségügyi informatikával kapcsolatos ismeretekben, valamint a 3D nyomtatás és a lézerek élettudományi alkalmazásaiban.

A specializáció keretében oktatott tárgyak átfogó ismereteket nyújtanak az orvosi képalkotás elveiről és gyakorlatáról, a humán diagnosztika eszközeiről, és a fizikai elveken alapuló terápiás módszerekről.


IMG_0320


A KÉPZÉS ELVÉGZÉSÉVEL SZEREZHETŐ KÉPESSÉGEK


– A természettudományos és műszaki szemléletnek köszönhetően képes leszel átlátni a komplex folyamatokat a tervezéstől a megvalósításig.

– A képzés során lehetőséged lesz projektmunkákban együttműködni hallgatótáraiddal és egyéni feladatokat is ellátni, így képes leszel csapatban és önállóan is dolgozni.

– Mérnöki, fizikai, matematikai, informatikai, gazdasági és menedzsment területen szerzett tudásodnak köszönhetően képes leszel összetett feladatok megoldására.

– A képzés során elsajátítod a kritikai szemléletet, a logikus, analitikus, rendszerszemléletű gondolkodás képességét, illetve fejlődik az elemző és a problémamegoldó képességed, a kommunikációs készségeid és a kreativitásod is.

– Képes leszel egyszerűbb fizikai jelenségek modellezéséhez programot írni, illetve összetettebb jelenségeket végeselemes szoftverrel modellezni.


TOVÁBBTANULÁS


Végzett hallgatóink a Fizikus MSc, illetve a Fotonikai-Mérnöki MSc szakon folytathatják tanulmányaikat, a mesterfokozat megszerzése után pedig részt vehetnek a Fizika Doktori Iskola PhD programjában is.


ELHELYEZKEDÉS, MUNKAKEZDÉS


Végzett hallgatóink számára a fizikus-mérnöki alapképzésben megszerzett tudás biztosítja a kedvező anyagi feltételek melletti gyors elhelyezkedést.

A diplomád megszerzése után dolgozhatsz például optikai fejlesztőmérnökként, tervezőmérnökként, technológiafejlesztő mérnökként, szoftverfejlesztő mérnökként, kutató-fejlesztőként, tesztmérnökként a kutatás-fejlesztés, az energetika, az anyagtudomány, a járműipar, adattudomány, nanotechnológia, az elektronika, a fotonika, az optika, az infokommunikáció és orvosi technológia területén tevékenykedő innovatív, tudásintenzív vállalatoknál, kutatóintézeteknél és egyetemeken.


HALLGATÓI ÉLET


Szeged barátságos, tágas, zöld, vibráló, diákközpontú egyetemi város, kulturális fellegvár. A Fizikai Intézetben aktív a hallgatói közösség, félévente ismeretterjesztő előadásokat, sportbajnokságokat, szakestet szerveznek. A kisebb létszámból fakadóan barátságos a hangulat és közvetlen a kapcsolat a hallgatók és az oktatók között.

HALLGATÓINK DIPLOMÁJÁNAK ÉRTÉKE


Az általános mérnöki tevékenység is egyre jobban épít a legmodernebb természettudományos ismeretekre, és ez a szak éppen ebben nyújt gyökeresen újat a hagyományos műszaki képzésekhez képest. Hallgatóink megtanulnak csoportban dolgozni, elsajátítják és alkalmazni tudják a munkaadók által elvárt természettudományi és műszaki-technológiai ismereteket, és ez lehetővé teszi számukra a majdani munkahelyükön a gyors beilleszkedést és szakmai illetve anyagi előrelépést.


TOVÁBBI INFORMÁCIÓ


A képzés további részletei elérhetők a felvi.hu-n!

A képzésről bővebb tájékoztatást adnak az Optikai és Kvantumelektronikai Tanszék munkatársai a velük készült interjúban, mely IDE kattintva olvasható.

A szakról megjelent cikkek:

Római, párizsi és lundi egyetemek példáin indít hazánkban eddig nem létező szakot az SZTE

Reagál a munkaerőpiacra az SZTE, fizikus-mérnöki alapszakot indít

Fizikus-mérnök alapszakot indítanak az SZTE-n

Fizikus-mérnöki alapszak indul a Szegedi Tudományegyetemen

Nagy dobásra készül a vidéki egyetem: ilyen piacképes új képzést indítanak

Friss hírek

Fejlec_SZTE_FI_2

2025. február 1-jén (szombaton) kerül megrendezésre a Szegedi Fizika Napja és a Budó Ágoston Fizikai Feladatmegoldó Verseny eredményhirdetése az SZTE Fizikai Intézetben. A tudománynépszerűsítő programon előadásokkal, standos bemutatókkal és laborlátogatásokkal készülünk az érdeklődőknek.

Fejlec2

Az SZTE Fizikai Intézet Fotoakusztikus Kutatócsoportjának kutatói –Kiss Diána, Kiss-Albert Gergely, Bozóki Zoltán és Huszár Helga – a Budapesti Műszaki Egyetemmel együttműködve publikáltak a Result in Engineering folyóiratban „High-resolution pollutant emission monitoring of turbulent combustion using the photoacoustic technique” címmel.

Kövess minket



instagramYouTube