20230118_fotoakusztika_nyito

Fotoakusztikus mérőműszerrel vizsgálják a mezőgazdasági környezetszennyezést

A Fizikai Intézet kutatócsoportja által használt és fejlesztett módszereket már régóta alkalmazzák levegő- és földgázszennyezettség kimutatására - mostantól a
műtrágya használat által okozott környezeti nitrogénterhelés is vizsgálhatóvá válik.

A Fizikai Intézet Optikai és Kvantumelektronikai Tanszékének és az ELKH-SZTE Fotoakusztikus Környezetifolyamat-megfigyelési Kutatócsoportjának „Műtrágyázásból eredő nitrogénveszteség mértékének vizsgálata; a környezeti nitrogénterhelés becslése szántóföldi kultúráknál fizikai mérésekkel” című projektje is támogatást nyert a Fenntartható Fejlődés és Technológiák Nemzeti Program, Fenntartható Technológiák Alprogram keretében. A projektet Prof. Dr. Bozóki Zoltán vezeti, a megvalósítása 2022. december 1. és 2026. november 30. között zajlik.

A projekt tudományos hátteréről, céljairól, az eredmények gyakorlati alkalmazhatóságáról és a kutatás további irányairól Dr. Horváth Lászlóval beszélgettünk.


Milyen tényezők indokolták a kutatási téma választását?

A környezetszennyezés és a különböző szennyező anyagok kibocsátásának problémája ismert. Az egyik legveszélyesebb környezetszennyező az ammónia – a nitrogén egyik vegyülete. Ez a gáz sokféle káros környezeti hatással rendelkezik. Például csökkenti a biodiverzitást, káros az emberi egészségre, a talajok állapotára, elősegíti az eutrofizációt, stb.… A probléma ott kezdődik, hogy évente 200 millió tonna inert nitrogént szintetizálnak ammóniává, amiből azután műtrágyát gyártanak, melynek legalább a fele veszteségként, szennyezésként a környezetbe kerül, a talajvízbe, az állóvizekbe, a levegőbe, mindenféle földi közegbe. A másik fele is, ami műtrágyaként hasznosul, előbb-utóbb a környezetbe jut, részt vesz a nitrogén ciklusban. Annak érdekében, hogy ezt a folyamatot mérsékeljük, illetve megállítsuk, a felhasználási technikákon kellene javítani, illetve tudni kell, hogy a különböző művelési technikák mellett mennyi műtrágya szabadul fel a légkörbe és mennyi tűnik el az egyéb közegekben. E problémával elég sok laboratórium foglalkozik világszerte. Ennek oka, hogy nagyon összetett a kérdés, mert rengeteg féle művelési technika van, rengeteg féle műtrágya van, meg rengeteg féle mérési módszer, melyek sokszor akár egymásnak ellentmondanak. Ezen a téren tehát lehet még mit kutatni. A téma aktualitása, illetve az Optikai és Kvantumelektronikai Tanszéken folyó, főként a fotoakusztikus módszeren alapuló környezetfizikai kutatások eredményessége miatt választottuk e témát programunknak, mely során nemcsak a műtrágya problémával, hanem általában a fotoakusztikus módszerek környezetanalitikai alkalmazásával fogunk foglalkozni a Fotoakusztikus Kutatócsoport közreműködésével, bár jelenleg a műtrágya van a fókuszban.


20230118_fotoakusztika_1
A nitrogén sorsa a bioszférában az ammóniaszintézistől a környezetterhelésig (Forrás: Horváth L., 2021: Nitrogén és kén: anyagcsere a légkör és a bioszféra között. In: Mészáros E. (szerk.) Légkőr-bioszféra kölcsönhatások. Akadémiai Kiadó, Budapest. MeRSZ elektronikus könyvtár)


Milyen módszerekkel és eszközökkel fogják végezni a méréseket?

A módszer a fotoakusztikán alapul. Megpróbáljuk fotoakusztikus módszerekkel olyan koncentráció tartományban mérni az ammóniát, ami már jellemző a környezeti viszonyokra. Jelen pillanatban ott tartunk, hogy ennek a módszernek a kimutatási határa olyan magas, hogy nem tudjuk a viszonylag alacsony légköri koncentrációkat mérni. Ez irányban folynak fejlesztések, és már jó úton haladnak. Ha már kifejlesztettük a módszert, kivisszük terepre, és elkezdjük mérni a talaj-növényzet-légkör rendszer közti ammónia fluxust, azaz az ammónia áramot, tehát tulajdonképpen azt, hogy mennyi ammónia áramlik a légkörből a felszín felé vagy fordított esetben mennyi jön onnan ki. Az ammónia kicserélődése a talaj és a növényzet között kétirányú. Ha a talaj és a növényzet által fenntartott kompenzációs-pont koncentráció, nagyobb, mint a légköri koncentráció, akkor kibocsátásról van szó, ellenkező esetben pedig ülepedésről. Ehhez még kell egy olyan műszer, egy ultrahang szélmérő, ami a fotoakusztikus rendszerrel össze van kapcsolva, így a fluxust mérni tudja. A méréseket az úgynevezett eddy kovariancia módszerrel végezzük. Ennek a lényege az, hogy mérjük a függőleges szélsebességet, és mérjük a fel, vagy leszálló légrétegekben fennálló koncentrációt. Ha például emisszió történik a felfelé menő légáramban több az ammónia, mint a lefelé menő légáramban. Összefüggésbe hozzuk a felfelé és a lefelé menő légáram sebességének és az ammónia koncentrációjának pillanatnyi változását. A függőleges légáram sebességének és a koncentráció pillanatnyi változásának a szorzat-átlaga adja meg a fluxust, azazaz az áramot.


Hogyan tudják a gyakorlatban alkalmazni a kifejlesztett mérőműszert?

A méréseket műtrágyázott szántóföldi területen fogjuk elvégezni. A műtrágyázás különböző időszakokban is történhet a növény vetési idejétől függően. Csupasz talaj felett is mérünk, illetve vegetációval borított felszín felett is. A lényeg az, hogy a műtrágyázás előtt és után mért értékből meg tudjuk állapítani, mennyi szabadul fel a légkörbe az alkalmazott műtrágyákból. Ennek a gyakorlati haszna pedig ott valósul meg, hogy egyrészt tudjuk, hogy mennyi szabadul fel, másrészt tudjuk, hogy milyen technikával alkalmazták a műtrágyát. Ebből arra a következtetésre juthatunk, hogy milyen összefüggés van az alkalmazott műtrágya fajta, az alkalmazási technika továbbá az egyéb művelési technikák és az ammónia veszteség között.


Milyen távlati terveik vannak a kutatási témát illetően?

Itt még nem állunk meg, mert további műszerfejlesztésekkel laboratóriumban is vizsgálhatjuk ezt a témát. Például tenyészedény, ill. inkubációs kísérletek során vizsgáljuk, honnan jön ki a káros anyag, a növények légzőnyílásain keresztül, vagy a tápoldatból, talajból, a műtrágya adagolása után. Ez is egy lényeges kérdés, hogy talaj bocsátja-e ki inkább az ammóniát vagy a növény, mert mindkettő jelentős forrás lehet. Továbbfejlesztve a fotoakusztikus módszert, áttérhetünk más nitrogén vegyületekre, mint például a dinitrogén-oxidra, az N2O-ra, ami az egyik üvegház gáz, és szintén talajeredetű. Az N2O nagy része az ammóniából származik. Miután az ammónia, pontosabban az ammónium bekerül a talajba, a nitrifikáció során oxidálódik melynek egyik köztes terméke az N2O felszabadul a talajból, nemcsak az üvegház hatása miatt jelentős, hanem eljut akár sztratoszférába is, ahol bontja az ózont. Ezeket a folyamatokat is próbáljuk majd nyomon követni stabil izotópos nyomjelzéses módszerrel, ami olyan segédeszköz, mellyel meg tudjuk állapítani a különböző szennyezőanyagok forrását és annak erősségét.





Tanulmányi hírek

Honlap_borito

Érdekel a körülötted lévő világ, és megismernéd pontosabban hogyan is működik? Szeretnél az ország egyik legjobb egyetemén egy gyönyörű városban tanulni? Ha a válaszod igen, legyél Te is fizika, fizikus-mérnök, csillagász, fotonikai mérnöki vagy fizikatanár szakos hallgató az SZTE-n!

fizikus-mernoki


Új szakkal bővítjük képzési kínálatunkat: 2024 szeptemberétől fizikus-mérnöki alapszakon is tanulhatnak az SZTE Fizikai Intézethez jelentkező hallgatók.


MIÉRT VÁLASZD A FIZIKUS-MÉRNÖKI SZAKOT?


– Szereted a fizikát, de az elmélet mellett a tervezésben és a gyakorlatban is jobban elmélyednél.

– Dinamikusan fejlődő területekre összpontosító, a világ gyors változásaira rugalmasan reagáló oktatásban lehet részed.

– Ipari partnereinkkel kialakított, innovatív és technológia-intenzív kis- és nagyvállalatok igényeire szabott, magyar nyelvű képzésen tanulhatsz.

– Fizikus-mérnöki diplomával hidat jelenthetsz a fizikusok és a mérnökök között, hiszen mindket szakterület skilljeivel rendelkezel.

– Mérnöki és fizikai tanulmányok mellett közgazdasági, informatikai és matematikai ismereteket is elsajátítasz.


FIZIKUS-MÉRNÖK KÉPZÉS SZEGEDEN


A nálunk képzett szakember egyaránt rendelkezik a természeti jelenségek mély megértésének és modellezésének képességével, valamint a kutatásfejlesztési feladatok kreatív megoldásához szükséges ismeretekkel és készségekkel. A megszerzett tudás birtokában képes a fizikai szemlélet alkalmazásával a műszaki, technológiai feladatok széleskörű megoldására, a problémák rendszerszintű átlátására.


IMG_0127


AMIT OKTATUNK


Matematikai ismeretek: vektor- és mátrixszámítás, differenciál- és integrálszámítás, valószínűségszámítás és statisztika, modern matematikai módszerek;

Fizika szakmai ismeretek: mechanika, optika, termodinamika és statisztikus fizika, elektromágnesség, illetve az atomfizika, kvantumfizika, szilárdtestfizika és magfizika alapjai;

Alkalmazott tudományos, technológiai és tervezési ismeretek: mérési módszerek, kísérleti eljárások és alkalmazásaik, számítógépes mérésvezérlés és folyamatszabályozás, tervezési ismeretek és számítógéppel segített tervezés, elektronika, méréstechnika és szenzorika, alkalmazott kémia;

Informatikai és számítástudományi ismeretek: programozás, számítógépes algoritmusok, gépi tanulás;

Kommunikációs és menedzsment ismeretek: gazdasági ismeretek, menedzsment, innováció, marketing, kommunikációs és prezentációs technikák.


Nézd meg itt, milyen óráid lesznek!


AHOGY OKTATUNK


– A diákok aktivitására építő oktatási módszerek széles körű alkalmazása.

– Sokrétű képzés: az elméleti órák anyaga számolási gyakorlatokon és laboratóriumi foglalkozásokon mélyül el.

– A legmodernebb informatikai és szimulációs eszközök és módszerek alkalmazásának elsajátítása a programozás alapjaitól a gépi tanulásig.


IMG_0312R


SPECIALIZÁCIÓK


Alkalmazott fotonika specializáció

Az Alkalmazott fotonika specializáció segítségével a hallgatóink felkészítést kapnak a lézeres technológiákat alkalmazó ipari folyamatok és eljárások alapjainak mélyreható megértésére.

Olyan optikai, lézerfizikai, spektroszkópiai és vákuumfizikai ismeretekre tesznek szert, melyeknek nemcsak az elméleti alapjait, de azok gyakorlatban történő alkalmazását is lehetőségük lesz laboratóriumi gyakorlatokon elsajátítani annak érdekében, hogy a munkaerőpiacon a szilárd elméleti ismeretek mellet gyakorlati készségekkel is rendelkeznek a szükséges területeken.


Anyagtudomány specializáció

Az Anyagtudomány specializáció célja, hogy a hallgatók átfogó képet kapjanak a legfontosabb anyagtudományi ismeretek és anyagvizsgálati módszerek alapjairól, az elméletet szemináriumokon, valamint számolási és laboratóriumi gyakorlatokon is alkalmazva.

A specializáció emellett kiemelt figyelmet fordít az olyan modern technológiai módszerek bemutatására is, mint a lézeres anyagmegmunkálás különböző fajtái, az additív gyártás (3D nyomtatás), illetve a nanotechnológia.


Orvosi technológia specializáció

Az Orvosi technológia specializációban résztvevők az emberi test anatómiái és élettani alapjainak megismerésén túl elmélyülhetnek az orvosi fizikával, az orvosbiológiai méréstechnikával, a biostatisztikával, és az egészségügyi informatikával kapcsolatos ismeretekben, valamint a 3D nyomtatás és a lézerek élettudományi alkalmazásaiban.

A specializáció keretében oktatott tárgyak átfogó ismereteket nyújtanak az orvosi képalkotás elveiről és gyakorlatáról, a humán diagnosztika eszközeiről, és a fizikai elveken alapuló terápiás módszerekről.


IMG_0320


A KÉPZÉS ELVÉGZÉSÉVEL SZEREZHETŐ KÉPESSÉGEK


– A természettudományos és műszaki szemléletnek köszönhetően képes leszel átlátni a komplex folyamatokat a tervezéstől a megvalósításig.

– A képzés során lehetőséged lesz projektmunkákban együttműködni hallgatótáraiddal és egyéni feladatokat is ellátni, így képes leszel csapatban és önállóan is dolgozni.

– Mérnöki, fizikai, matematikai, informatikai, gazdasági és menedzsment területen szerzett tudásodnak köszönhetően képes leszel összetett feladatok megoldására.

– A képzés során elsajátítod a kritikai szemléletet, a logikus, analitikus, rendszerszemléletű gondolkodás képességét, illetve fejlődik az elemző és a problémamegoldó képességed, a kommunikációs készségeid és a kreativitásod is.

– Képes leszel egyszerűbb fizikai jelenségek modellezéséhez programot írni, illetve összetettebb jelenségeket végeselemes szoftverrel modellezni.


TOVÁBBTANULÁS


Végzett hallgatóink a Fizikus MSc, illetve a Fotonikai-Mérnöki MSc szakon folytathatják tanulmányaikat, a mesterfokozat megszerzése után pedig részt vehetnek a Fizika Doktori Iskola PhD programjában is.


ELHELYEZKEDÉS, MUNKAKEZDÉS


Végzett hallgatóink számára a fizikus-mérnöki alapképzésben megszerzett tudás biztosítja a kedvező anyagi feltételek melletti gyors elhelyezkedést.

A diplomád megszerzése után dolgozhatsz például optikai fejlesztőmérnökként, tervezőmérnökként, technológiafejlesztő mérnökként, szoftverfejlesztő mérnökként, kutató-fejlesztőként, tesztmérnökként a kutatás-fejlesztés, az energetika, az anyagtudomány, a járműipar, adattudomány, nanotechnológia, az elektronika, a fotonika, az optika, az infokommunikáció és orvosi technológia területén tevékenykedő innovatív, tudásintenzív vállalatoknál, kutatóintézeteknél és egyetemeken.


HALLGATÓI ÉLET


Szeged barátságos, tágas, zöld, vibráló, diákközpontú egyetemi város, kulturális fellegvár. A Fizikai Intézetben aktív a hallgatói közösség, félévente ismeretterjesztő előadásokat, sportbajnokságokat, szakestet szerveznek. A kisebb létszámból fakadóan barátságos a hangulat és közvetlen a kapcsolat a hallgatók és az oktatók között.

HALLGATÓINK DIPLOMÁJÁNAK ÉRTÉKE


Az általános mérnöki tevékenység is egyre jobban épít a legmodernebb természettudományos ismeretekre, és ez a szak éppen ebben nyújt gyökeresen újat a hagyományos műszaki képzésekhez képest. Hallgatóink megtanulnak csoportban dolgozni, elsajátítják és alkalmazni tudják a munkaadók által elvárt természettudományi és műszaki-technológiai ismereteket, és ez lehetővé teszi számukra a majdani munkahelyükön a gyors beilleszkedést és szakmai illetve anyagi előrelépést.


TOVÁBBI INFORMÁCIÓ


A képzés további részletei elérhetők a felvi.hu-n!

A képzésről bővebb tájékoztatást adnak az Optikai és Kvantumelektronikai Tanszék munkatársai a velük készült interjúban, mely IDE kattintva olvasható.

A szakról megjelent cikkek:

Római, párizsi és lundi egyetemek példáin indít hazánkban eddig nem létező szakot az SZTE

Reagál a munkaerőpiacra az SZTE, fizikus-mérnöki alapszakot indít

Fizikus-mérnök alapszakot indítanak az SZTE-n

Fizikus-mérnöki alapszak indul a Szegedi Tudományegyetemen

Nagy dobásra készül a vidéki egyetem: ilyen piacképes új képzést indítanak

Friss hírek

Fejlec2

Az SZTE Fizikai Intézet Fotoakusztikus Kutatócsoportjának kutatói –Kiss Diána, Kiss-Albert Gergely, Bozóki Zoltán és Huszár Helga – a Budapesti Műszaki Egyetemmel együttműködve publikáltak a Result in Engineering folyóiratban „High-resolution pollutant emission monitoring of turbulent combustion using the photoacoustic technique” címmel.

Fejlec

Az osztrák és a nemzetközi intézmények tudósainak együttműködését célzó projekt keretében tart mini-kurzust Fehér László, a SZTE Elméleti Fizikai Tanszékének professzora.

Kövess minket



instagramYouTube